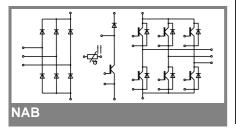
SKiiP 37NAB066V1

MiniSKiiP®3

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 37NAB066V1

Target Data

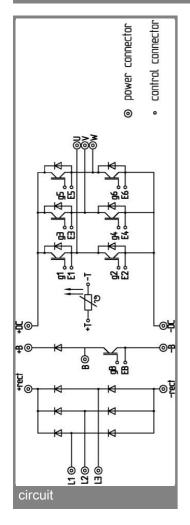
Features

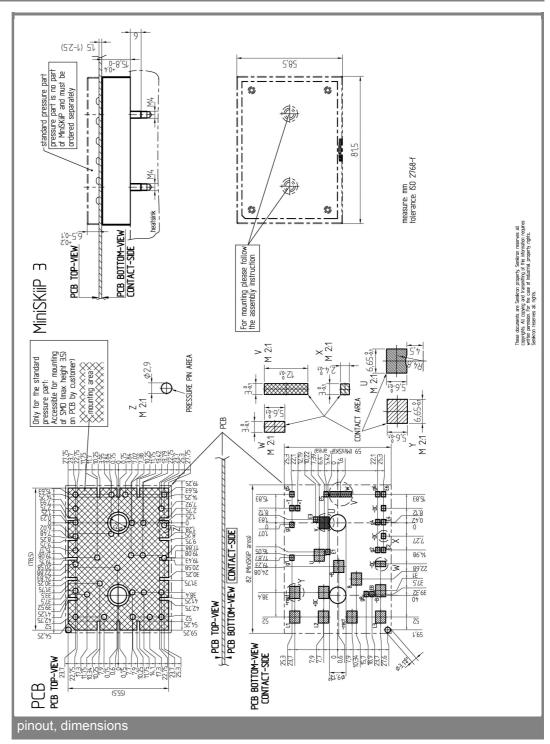

- Trench IGBT
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

- Inverter up to 18 kVA
- Typical motor power 7,5 kW

Remarks


- Case temperature limited to T_C =
- · Product reliability results are valid for $T_i = 150$ °C
- SC data: $t_p \le 6 \mu s$; $V_{GE} \le 15 V$; $T_j = 150 ^{\circ} C$, $V_{CC} = 360 V$ V_{CEsat} , $V_F = chip level value$



Absolute	Maximum Ratings	S = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	79 (53)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	88 (65)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	150	Α				
V_{GES}		± 20	V				
Diode - Inverter							
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	65 (42)	Α				
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	77 (56)	Α				
I _{FRM}	t _p = 1 ms	150	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	61	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	700	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	2400	A²s				
I _{tRMS}	per power terminal (20 A / spring)	80	Α				
T _i	IGBT, Diode	-40+175	°C				
T _{stg}		-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characteristics T _S = 25 °C, unless otherwise sp					ecified			
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CE(sat)}	I _{Cnom} = 75 A, T _i = 25 (150) °C	1,05	1,45 (1,65)	1,85 (2,05)	V			
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		5,8		V			
V _{CE(TO)}	T _j = 25 (150) °C		0,85 (0,7)	1,1 (1)	V			
r _{CE}	T _j = 25 (150) °C		8 (12,7)	10 (14)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		4,4		nF _			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,78		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,66		nF			
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ			
$R_{th(j-s)}$	per IGBT		0,75		K/W			
t _{d(on)}	under following conditions		115		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -8\text{V}/+15\text{V}$		45		ns			
t _{d(off)}	$I_{Cnom} = 75 \text{ A}, T_j = 150 \text{ °C}$		475		ns			
t _f	$R_{Gon} = R_{Goff} = 8.2 \Omega$		60		ns			
$E_{on} \left(E_{off} \right)$	inductive load		2,7 (3)		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _F = 75 A, T _i = 25 (150) °C		1,5 (1,5)	1,7 (1,7)	V			
$V_{(TO)}$	T _i = 25 (150) °C		1 (0,9)	1,1 (1)	V			
r _T	T _j = 25 (150) °C		6,7 (8)	8 (9,3)	mΩ			
$R_{th(j-s)}$	per diode		1,2		K/W			
I _{RRM}	under following conditions		52		Α			
Q_{rr}	I _{Fnom} = 75 A, V _R = 300 V		8		μC			
E _{rr}	V _{GE} = 0 V, T _i = 150°C		1,8		mJ			
	di _F /dt = 1480 A/μs							
Diode - Rectifier								
V_{F}	I _{Fnom} = 35 A, T _i = 25 °C		1,1		V			
V _(TO)	T _i = 150 °C		0,8		V			
r _T	T _j = 150 °C		11		mΩ			
$R_{th(j-s)}$	per diode		0,9		K/W			
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
w			97		g			
M _s	Mounting torque	2		2,5	Nm			

SKiiP 37NAB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.